2= ls Artificiak-intelligerice the “new”
~ Operating Systen

Omer F. Rana

School of Computer Science & Informatics

Cardiff University, UK
ranaof@cardiff.ac.uk Twitter:@omerfrana %

CARDIFF

UNIVERSITY
PRIFYSGOL

(AERDY



mailto:ranaof@cardiff.ac.uk

This talk is really about initiating a discussion ...

and identify potential research directions

HOW LONG WOULD
IT TAKE YOU TO
CREATE ARTIFICIAL
INTELLIGENCE THAT
IS AS SMART AS
HUMANS?

@SCOTTADAMSSAYS

DILBERT.COM

IT SHOULDNT
TAKE ME LONG TO
DUMB—-DOWN A
COMPUTER TO
HUMAN LEVELS.

)
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If Artificial Intelligence techniques are embedded in our systems and
software environments — how should a developer respond to this?

Re-create, Re-use, Adapt or Ignore?

Should we differentiate between Atrtificial
Intelligence as an enabler

vs. Artificial Intelligence as an application?

To what extent should we “trust” the outcome of
Artificial Intelligence-based systems?
How do we decide?




Edge & Programmability

(from Manish Parashar)

Software efined Networks

ass

]

T %

Computing at the edge '

i | Accelerator Enhanced

High-end Devices

Increasing Computing Power
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Data Volume
Bandwidth

smart TVs & game

Processing Power
consoles

Power

Software Defined Networking enables telecom. operators to offer specialist data

services. Computation extends beyond the Data Centre ... enabling additional
capability & revenue streams. Merging of Data Centre & Telecom. functionality




Edge & Intransit capability

(Al to optimise infrastructure & placement)
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Qin, Yugen, Xia, Qiufen, Xu, Zichuan, Zhou, Pan, Galis, Alex, Rana,
Omer, Ren, Jiankang and Wu, Guowei, “Enabling multicast slices in

edge networks”. IEEE Internet of Things 7 (9) , 2020, pp. 8485-8501.
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(a) The underlay and overlay of the test-bed

(b) The physical deployment
of the hardware switches

constraints of cloudlets.

(c) The raspberry pi




What i1s an Operating System?

 Managing computational resources to

meet particular Quality of Service criteria
— Process/Thread management & Coordination
— Kernel architectures

— Resource management. memory, I/O, resources
(internal and external), network

— Managing user migration and state
— Extension: Plug-ins, Dynamic Link Libraries ++

— Security support (at various levels: SSL/TLS, Access
Control ++)

« Abstraction driven (process or threads)

 All the software you did not write, but must
“trust”



POSIX 0S/2
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Edge Environments:

Deep neural network (DNN) inferer
the chip — 16 SHAVE cores

Prototype on stick — deploy on VP
embedded device(s)

Intel OpenVINO toolkit -- used for

(@ Neural Compute Stick 2 W

/-'\‘/‘

__RISC Processors, RTOS

chedulers, Pipeline
anagers, Sensor Control

'Frameworks




Edge Environments: Intel Vision Processing Units (VPUs)

-- https://www.intel.ai/featured-solutions/

e VPUs feature purpose-built (SHAVE) processor
cores — for speeding up neural net. execution
& programmed via Myriad Development Kit
(MDK).

 VPUs in Google’s Clips camera, DJI’'s Phantom
4 drone, and Tencent DeepGaz (China) ++

[ OPTIMIZED SOFTWARE ]
GPU FPGA




Al-based enhancements

Hardware vendors support Al:

Huawei's Al Portfolio
Al Application

I HiAl Service I I General APIs I [ Advanced APIs I I Pre-integrated Solutions N
Application

Enablement

HiAl Engine ModelArts

MindSpore TensorFlow PyTorch PaddlePaddle Framework

: gl : Chip
ANNM Compute Architecture for Neural Networks
CANN (c LC Chiec Enablement
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I Ascend-Nano “ Ascend-Tiny “ Ascend-Lite I Ascend LAS(end-MiniJ[ Ascend‘MaxJ IP & Chip

Consumer Device Public Cloud Private Cloud Edge Computing Industrial 10T Device

Hardware & Systems vendors (Intel, Dell, NVidia, ++) are embedded Al into
their Platform (Huawei Da Vinci architecture)




TinyML — Machine Learning for Edge Environments

https://www.tinyml.org/summit/

* Reducing size of learned model (e.g.
MobileNet(v2) + SSDLite) — and migrating to AlexNet (Convolution

edge resources (Arduino) — e.g. TensorFlow Neural Network (CNN))

Lite — for image processing.
. , _ Typically: 50M

— Bandwidth, Latency, Security (some key drivers) ST (i)

— Limited device memory (Flash: 32KB-~MB; SRAM: each 4bytes = 200MB
16KB — 512KB) (just for a weights file)

* Training on a Cloud environment: Distillation
& Quantization of a learned model (C-based)

* Trading off accuracy vs. performance [ }

https://www.tensorflow.org/lite/performance/quantization_spec [ }

Q



PerfML for TinyML

https://groups.google.com/g/mlperf-tiny

Type of processors:

AMD Cortex A7, STM32 Microcontroller, Raspberry Pi, Arduino Uno

Task Category Use Case Model Type Datasets
Audio Wake Words DNN Speech Commands
i Audioset
Audio Context Recognition CNN ExtraSenso
Control Words RNN Freesoun dry
Keyword Detection LSTM DCASE
, DNN .
Visual Wake Words CNN Visual Wake Words
Object Detection CIFAR10
" SVM
Image Gesture Recognition . MNIST
. . Decision Tree
Object Counting KNN ImageNet
Text Recognition . DVS128 Gesture
Linear
Segmentation DNN Physionet
Physiological / Anomaly Detection Decision Tree HAR
Behavioral Metrics Forecasting SVM DSA
Activity Detection Linear Opportunity
. .D.NN UCI Air Quality
Sensing Decision Tree UCI Gas
Industry Telemetry Predictive Main_tggance SVM UCI EMG
e AQMQECURIRE . ¢ g NASA's PCOE
A NN - Naive Bayes




TensorFlow Lite

https://www.tensorflow.org/lite/

* Interpreter for on-device “inference”, supporting a set of core operators
that are adapted for specific devices (with a small binary size)

— interpreter uses a static graph ordering and a custom (less-dynamic) memory
allocator

— a converter that maps TensorFlow model (including Keras) = TensorFlow Lite

* Includes Model optimization tools, including quantization, that can reduce
size and increase performance of models without sacrificing accuracy.

» Uses FlatBuffer (https://google.github.io/flatbuffers/) that is optimized
for small size and portability (serialized access, no packing/unpacking)

e Supports Android & iOS, embedded Linux, and microcontrollers (Arduino)
— APl support for Java, Swift, Objective-C, C++, and Python

e Can work with hardware acceleration on supported devices (e.g.
quantized - float if GPU is available), device-optimized kernels

* Pre-trained models (https://www.tensorflow.org/lite/models) for
common machine learning tasks (image analysis, object detection, pose

estimation, image styling/transfer, NLP ++) — hosted models:
https://www.tensorflow.org/lite/guide/hosted models



https://google.github.io/flatbuffers/
https://www.tensorflow.org/lite/models
https://www.tensorflow.org/lite/guide/hosted_models

Compute Support for Al

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

-day (Training)

¢ AloxNet

Petaflop/fs

¢ Dropout

¢ AlphaGo Zero
e AlphaZero

e Neural Machine Translation

o Noeural Architecture Search

o Xception ¢TI7 Dota

VGG e DoopSpeech?
®Se¢q2Seq e RaesNets

¢ GoogleNet

e Visualizing and Understanding Conv Nets

¢ DON

Year

Compute used in the
largest Al training runs
has grown >300,000x.

A petaflop/s-day (pfs-
day) consists of
performing 1015 neural
net operations per
second for one day

. https://www.i-programmer.info/news/105-artificial-intelligence/11823-an-exponential-law-for-ai-compute.html ‘



Do we understand what the Al does?

http://www.shallowmind.co/jekyll/pixyll/2017/12/30/tree-regularization/

* Lots of focus on “explainable Al”

GradCam -
e Balancing interpretability with accuracy C;;,fg;,i;ggg’
for decisions by
using gradients

— Use of approximations is key to support this

. of target
— But not always possible Concepts o
. . highlight
* |dentify “focus” of a deep learning network — [iria

pixels

4

(g) Original Image (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (1) ResNet Grad-CAM ‘Dog’

(h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’



Do we understand what the Al does?

“Feature Visualisation”

Dataset Examples
show us what neurons
respond to in practice

Optimization isolates
the causes of behavior
from mere correlations.
A neuron may not be
detecting what you
initially thought.

Baseball—or stripes? Animal faces—or snouts?  Clouds—or fluffiness? Buildings—or sky?
mixed4a, Unit 6 mixed4a, Unit 240 mixed4a, Unit 453 mixed4a, Unit 492

* Feature Visualization - generate images via optimization to activate a
specific neuron or set of neurons

I * Isolating effects of individual neurons




Generating Explanations

* “Contrastive Explanation Method” (IBM)

— Generates instance based local black box explanations
for classification models in terms of Pertinent
Positives (PP) and Pertinent Negatives (PN)

— PP: features that should be minimally and sufficiently
present (e.g. important pixels in an image) to predict
the same class as on the original instance

— PN: features should be minimally and necessarily
absent from the instance to be explained in order to
maintain the original prediction class

C



LIME - locally explainable models

https://towardsdatascience.com/understanding-how-lime-explains-predictions-d404e5d1829c

* Local Interpretable Model-Agnostic Explanations
(LIME)

— even the most complex model can be reasonably
approximated locally using a simpler model
* LIME generates an explanation by approximating the
underlying model by an interpretable one (such as a
linear model)

Locally weighted
’ regression b )
o &w‘

_ e
(S
™

Original Image Interpretable

Components
Explanation

Original Image
P(tree frog) =0.54




Dynamic VM allocation & Elastic provisioning

* “Elasticity”

the degree to which a system is able to adapt to
workload changes by provisioning and de-
provisioning resources, such that at each point in
time the available resources match the current
demand as closely as possible.

* Can elastic provisioning capability be
measured?

Q




Dynamic VM/container allocation

* Scale up speed: switch from an under
provisioned state to an optimal or
overprovisioned state.

— Can we consider “temporal” aspects of how scaling up
takes place

e Deviation from actual to required resource
demand

— Measure deviation to influence the overall process

* Role of predictive allocation for “known” events

— i.e. know in advance how many VMs or container
instances to allocate

C




An Example: Quality Metrics to drive Al

. Service Level Agreement (SLA):
workload intensity E.g.: resp. time < 2 sec, 95%

Resource Demand:
Minimal amount of #/Ms required

to ensure SLAs.

ﬁme"
#/Ms
g 4
_J resource demand
_ N
° \ 7/, undemprovisioning
4 = __[resource supply
2 Nova'pro‘.dsbning
ﬁmeh

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)



Comparing allocation




Elasticity Metrics
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Elasticity Metrics ... 2

A [Average time of switch from an underprovisioned to an optimal or overprovisioned state
I_rahmen_neu_folgej@verage speed of scaling up

YA Accumulated time in underprovisioned state.
U  Average amount of underprovisioned resources during an underprovisioned period.
YU Accumulated amount of underprovisioned resources.

B,¥B,0,¥ 0 correspondingly for overprovisioned states

YU >0 Average precision d - R
Py = T Py = T of scaling up / down E I ] T
T = total evaluation duration
1 1 Elasticity metric B g
By = Axl’ 1Eq = Bx0 for scaling up / uBDE
down

—§=

Q




Developing Distributed Applications (DAs)

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.2897

* How can applications make use of Al

— Understanding what parameters are exposed to
(one or more) external controller(s)

e Location/influence of the data controller

— In practice, varying degree of control

» Separate control logic/behaviour from:
— Data flow / path

L — Components engaged in the data path J



Tuning of application & resource manager

parameters
Resources
Results / R
Application | Resource | & |

Inputs Manager \ R

Tuning
Ej Tuning Parameters R

Parameters
Autonomic v

Tuning Ej
%

Autonomic tuning of
application & resource

‘ manager parameters

A




Tuning by application

Autonomic tuning by application

\ 4

Ej __, | Application

Tuning
Strategy

Resources
Result R
esults
<— | Resource /
EE—— —
Inputs

=

Manager \ R
E

Tuning
Parameters R

Tuning

A

Autonomic v

Historical (monitoring) data

@ Resource reservation to achieve particular QoS-criteria

@ Dynamic analysis of data stream from a scientific instrument — may also involve

analysis of video/audio feeds




Splitting the resource pool

(dynamically allocated)

* Combine machines in a resource pool

— Some used to support simulation (actual
workload)

— Others used to tune the simulation (“learner”
nodes)

* Dynamically adapt resource

Task

. Execution
pool based on tuning . Node
Learning
Node Task
_ _ _ Execution
A. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, and Nod
M. Parashar, “A computational model to support in- Learning OCE

network data analysis in federated ecosystems”. Future
Generation Computer Systems 80, 2018 -- pp. 342-

354. 10.1016/j.future.2017.05.032 Execution

Node ‘

Node Task



http://orca.cf.ac.uk/view/cardiffauthors/A168264R.html
http://dx.doi.org/10.1016/j.future.2017.05.032

Edge Approximation ...

 Combine capability in Data Centre with “approximate”
algorithms in transit or at the edge

* EnergyPlus (as at present) + a trained neural network (as a
function approximator for EnergyPlus behaviour)

 But why?
— EnergyPlus ~ Execution time(Minutes)
— Neural Network Training ~ Execution time (Minutes)
— Trained (FF) Neural Network ~ Execution time (Seconds)

* Combine more accurate model execution with approximate
model via a learned neural network

* Trigger re-training when input parameters change significantly

— Each EnergyPlus execution provides potential training data for the
neural network
| A. R. Zamani, I. Petri, J. Diaz-Montes, O. Rana, M. Parashar, “Edge-supported Approximate Analysis for Long ‘

Running Computations”, Proceedings of the 5th IEEE International Conference on Future Internet of Things and
Cloud (FiCloud 2017), Prague, Czech Rep., August 2017



Splitting the resource pool

(dynamically allocated)
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A. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, and
Node

M. Parashar, “A computational model to support in- Learning
network data analysis in federated ecosystems”. Future Node ”

Generation Computer Systems 80 , pp. 342- Task

354. 10.1016/j.future.2017.05.032 Execution
‘ Node ‘



http://orca.cf.ac.uk/view/cardiffauthors/A168264R.html
http://dx.doi.org/10.1016/j.future.2017.05.032

Distributed, Dynamic, Data Intensive (D3) Science :

Application Survey

* Consider applications where data workload is equivalent to or greater
than computational workload

* Properties of “dynamic” data applications
— Real time: generated, re-distributed or partitioned data
— On-demand: varying availability of data
— Adaptive: change in processing or storage granularity

 Computational activities triggered due to data creation
— Computation must respond to unplanned changes in data volumes or content

* To scale — various trade-offs necessary:
— Move computation or data?
— Frequency of access & varying modes of analysis
— Increasing “in-memory” processing (high disk I/O overhead)

Considered a variety of applications that conform to the above characteristics ‘
- -



Distributed, Dynamic, Data Intensive (D3) Science : Application

Survey (joint EPSRC (UK) & NSF (US) funded)

 What s the purpose of the application?
* How is the application used to do this?

 What infrastructure is used?
— including compute, data, network, instruments, etc.

 What dynamic data is used in the application?
— What are the types of data?
— What is the size of the data set(s)?

* How does the application get the data?

* What are the time (or quality) constraints on the application?
* How much diverse data integration is involved?

 How diverse is the data?

Introducing Distributed Dynamic Data-intensive (D3) Science:
Understanding Applications and Infrastructure, Shantenu Jha, Neil Chue Hong,

Daniel S. Katz, Andre Luckow, Omer Rana, Yogesh Simmhan,
Concurrency and Computation: Practice & Experience, John Wiley, 2017

https://arxiv.org/abs/1609.03647




Scientific Applications considered ...

Application Communication Execution
example execution unit (data exchange)  Coordination environment
Montage Multiple sequential Files Dataflow Dynamic process creation,
and parallel (DAG) workflow execution,
executables file transfer
NEKTAR Multiple concurrent Messages SPMD MPI,
instances of coscheduling
single executable
Coupled fusion Multiple concurrent Stream-based  Dataflow Coscheduling,
simulation parallel executables data streaming,
async. data I/O
Asynchronous Multiple sequential Pub/sub Dataflow Decoupled coordination
replica-exchange and/or parallel and events and messaging, dynamic
executables task generation
ClimatePrediction.net Multiple sequential Files Master/ At-Home (BOINC)

(zeneration)

ClimatePrediction.net
(analysis)

SCOOP

executables, distributed
data stores

A sequential executable,
multiple sequential or
or parallel executables
Multiple different
parallel executables

and messages

Files
and messages

Files
and messages

worker, events

Dataflow
(Forest)

Dataflow

Dynamic process
creation, workflow
execution

Preemptive scheduling,

|

reservations



What does the Al manage?

O Distnbuted Application (DA]) Vectors:

»  What the pieces of distribution are? How these pieces interact?

Flow of information? What is needed fo actually deploy and

execute the application®

O DA Vectors: Preliminary theoretfical framework fo analyze DA structure

Q

Vectors: Axes representing
application characteristics;

understanding the value
helps:

*«  App Requirements

« Skillful aggregation
versus Decomposition

«  Prmacy of
coordination

» Design, constraints of
solutions

Application Exerution Unit Commun- | Coord- | Execution  Enwvi-
Exnmple ication ination | ronment
iData Ex-
change)
Montnge Multiple sequential and | Files Dataflow| Dynamic prooess cre-
parallel executables (DAY | atlon, workflew  exe-
cution, fik transfer
NEKTAR Multiple concurrent in- | Messages SPMD MPFI., co-scheduling
stances of simele  ooe-
cutable
Coupled Pusion | Multipls concurrent par- | Stream- Dataflow| Co-scheduling,  data
Simulation allel executables JERETEN sErenming, HEVIIC,
date 1/
Aaynchromos Multiple sequential | Puobfaok Dratafiow| Drecoupled  coordina-
Replica- anid for paraliel moecuts- anid tiom and messaging,
Exchange hla= VETLE dynamic task genera-
thom
Clirmate Multiple sequential | Files  and | Master) | AtHooe (BOINC)
Frediction. net executables, disiributed | messages worker,
| {gemeration dats stores EVETHE
Clmate- A sequential executable, | Files  and | Dataflow| Dymamic procoss cre-
Prediction nat multiple  sequantial  or | messapes {For- ation, workfles exe-
(analysis ) prrallel execntobles st} cution
OO Multiple different paral | Files and | Dataflowr| Preemiptive  achedal-
lee] et a s IEIEEH AT ing, resarvalions




Types of systems and software tools used ...

Application example Execution unit Communication Coordination Execution environment
Montage - - DAGMan Pegasus (abstract
workflow); Condor
DAGMan (for enactment)
NEKTAR MPICH-G2  MPICH-G2 MPICH-G2 Distributed MPI (e.g.,
MPICH-G2), cosche-
duling (e.g.. HARC for
advanced reservation)
Coupled fusion MPL/ OpenMP PORTALS/ VERBS Data I/O: DART/ DMA-based data
simulation (over RDMA) ADIOS, Coupling: extraction, data streaming
SIENE (over tool, puts (gets)
sockets), Kepler  on remote memory
Asynch. Replica- MPI/ pthreads Meteor (pub/sub Distr. shared JXTA-based services,
exchange mole- notification over space: COMET  COMET (decentralized tuple
cular dynamics JXTA pipes) (over JXTA) space implementation)
and Meteor
ClimatePrediction.net - BOINC BOINC At-Home (BOINC)
(generation) (over hitp)
ClimatePrediction.net - - Martlet Workflow execution
(analysis) through Martlet
SCOOP - LDM [43] - SPRUCE. HARC

C 4



Al-supported Tools Interoperability ...

C

Large number of (potentially unstable) programming
systems, tools and deployment environments

— Understanding how applications make use of these

— What are the common themes across these?

Applications are hard to extend

)

— Develop them in such a way that it is easy to “swap in/out
coordination capability

— Analogous to development of operating system services
Need for abstractions to support application
development

— Formulation, development and execution less dependent
on the infrastructure used




Q

Application
Thas

{Application Objectives}
e.g. load balancing

Autonomic Strategy

Application
achieved through E;];;EIII'E
. Balancing

{mechanisms} g

e.g. change DAG fan-in

@ Application-level Objective (AQ): Us
increase throughput, reduce task fai

@ Mechanism: action used by applicat

1. Adapt task mapping granularity

hased on system capabilities/state
File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching,
Storage Management

2. Resource Selection

Resource selection (using BOP),
resource configuration update,
Task rescheduling, Task migration
File distribution and caching
Storage Management

mechanism n ({m;}, {mf}i {Mo}, Scientific

o {m} and {m,}: file referen¢| %"

Algorithmic Adaptivity
C hange solvers

e {mF}: input events that trigyer start ur nie hl:lHlllg
e {m5}: output events after file staging is completed.

@ Strategy: consists of a collection of mechanisms — manual or dynamically

constructed by an autonomic approach

4



What abstractions do we give Al?

B Relation between Application,
Abstractions and Patterns:

+ Application: Need orcan use >1 R
. . Application
«  Patterns: Formalizations of

commonly occurring modes of
computation, compaosition, and/or
resource usage

« Devel, Deploy & Exec Phase

. ) Abstraction
*«  Abstractions: Process, mechanism _
. contains
or infrastructure to support a
C{]mm(}ﬂly OCCcurring usage \
Coordination Deployment
Master-Worker (TF, BoT) Replication Pattern
All-Pairs Co-allocation
Data Processing Pipeline Consensus
MapReduce Brokering
AtHome
Pub-5ub

O 4




Concluding remarks ...

* Programmable infrastructure opens greater
potential for use of Al-based approaches

— What parameters are tuned by the Al
environment

— Outcome of these on the resulting application

* Supporting Al in hardware —means to
accelerate the performance of Al algorithms
(particularly neural networks)

* Writing applications with Al in mind

— Use of abstractions and design patterns that are
h “enablers” for Al-based techniques ‘





