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I. Context
O Data Explosion and consequences
Il. Data-Driven Problem Statement (Clustering)
O Using k-means and EM (iterative)
O Low Expression (LE), High Expression (HE)
® HE affects the outcome the most
lll. Solution

O Separate LE, HE, using the HE as much as possible, ignoring LE as much as
possible

O Implement DCEM R package (Data Clustering using EM*)
IV. Results

o EM* work on big data

O Case Studies
V. Future Work

O Parallelize, Distributed algorithm (Extend DCEM)
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|. Context: Perspective—it’s all about the

data
1

Zettabytes of Data Generated and Colleged as a Function of Time
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|. Context: Perspective—it’s all about the

data
1

Zettabytes of Data Generated and Colleged as a Function of Time
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|. Context: Perspective—it’s all about the

iterative algorithms

Objective
Function

data continually is revisited

agnostic to its value

] D
lim Compumngt( ata) = () Basarim 2020
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|. Context: Perspective—it’s all about the
data

6|
2 Y
S 2 HE — High Expressive Data changes the objective function
> v . . .
‘5 2 LE — Low Expression Data does not change the object function
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|. Context: Perspective—it’s all about the

data

HE — High Expressive Data changes the objective function
LE — Low Expression Data does not change the object function

High Expressiveness
Low Expressiveness

Objective
Function

Data efficient
Separator actual “structure”

o
S 1o
-0'0

convergence on
“structure”
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Download statistics for DCEM since Release (2018 September)
Max = 800, Ave = 390, Min = 41

package
400 - ~+— DCEM

Number of Downloads

200 - Fixed floor round-

off error
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Source: Download mirrors of CRAN




Il. Data-Driven Problem Statement

$C|usiering=
N

We conducted a series of experiments comparing

» KM* to KM
» EM" to EM

» Parallel implementations, ParaHeap-k to k-means++ and
k-means||

with both real world and synthetic data sets through different
Kinds of testing: scale, dimension, and separability.

Basarim 2020



Il. Data-Driven Problem Statement

(Clustering)
S
0 1" Call from |IEEE Computer on Computational

Astronomy

O Question: Cluster the Milky Way? -

O Yes: Difficult because of the data
0 Let’s do itl

O Each star is “given birth” from

300

[(iuluclic Bulge

one of the galactic components
0 We can check the quality of the

cluster using metallicity

Basarim 2020



Il. Data-Driven Problem Statement

(Clustering)
N

Pre-cluster
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Il. Data-Driven Problem Statement

(Clustering)
e d
0 What, at that time, would be the best clustering

1 Quick change in nomenclature

J

For a non-empty finite set X, a partition is { X1, Xo,..., X} s.t.
o U X, =X
e fori.j=12....ni#j—>X;NX; =0
o fori=12....m:X; #0

e for:=1,2,....,n: X; C X, X, is called a block

1 So the question becomes, can we partition the Milky
Way so that each star belongs to its proper block (in
this case, galactic component)

Basarim 2020



Il. Data-Driven Problem Statement
B2

0 Can we materially improve k-means from a data-
centric perspective to cluster big stellar data?

o YES!
0 Can this be generalized for other iterative machine
learning algorithms?

o YES!
m Separating LE/HE data

Basarim 2020



Il. Data-Driven Problem Statement

ey
0 k-means algorithm (60 yrs.) [hard]

O Assign each datum to one block (Centroid ~ “Best
Representative” ~ Ave)

O Use simple Euclidean distance

O Re-calculate Centroid until convergence

0 Gaussian Mixture Model (50 yrs.) [soft]
O Assign datum to every Gaussian (block) with a probability
O Re-calculate properties of Gaussians

O Iterate until convergence though it can be very slow (another
ascent method)

Basarim 2020



Il. Data-Driven Problem Statement

(Clustering)
o

0 We decided on k-means because of its general success and ubiquitous
use and remains one of the most popular algorithms (Lloyd’s
algorithm)

O Data Clustering: 50 Years Beyond K-Means [Jain] 2009

O Initialization (seeding)
m k-means++ [Arthur, Vassilvitskii] 2006, 2007
® k-means| | (Scalable k-means) [Bahman et al.] 2012 _
m kd-trees pre-filtering [Kanungu, et al.] 2000

m kd-trees [Pelleg, Moore] 1999
O Triangle Inequality + distance bounds

m [Elkan] 2003 (Excellent paper for bibliography on speed-ups for k-means)
® [Hamerly] 2010
m [Drake] 2012

® [Hamerly, Drake] 2014 use priority queues to prune points close to assigned
centers; use heaps to store differences between lower and upper bounds of
points

0 Witness where it’s used: ELKI, graphlab, Mahout, MATLAB, MLPACK, Octave,
OpenCV, R (various), SciPy, Weka, Yael, etc.Basarim 2020



Il. Data-Driven Problem Statement
(Clustering)

2 % _ 2 -
o . e P ot 1
ik ook e Yed % J
" rlﬁ% P ‘...::,.” %1 0 v L - L'If_:"l - [ . 1
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(a) Supervised (b) Partally labelled (d) Unsupervised

Figure 1 Learning problems: dots correspond to points without any labels. Points with labels are denoted
by plus signs, asterisks, and crosses. In (c), the must-link and cannot-link constraints are denoted by solid
and dashed lines, respectively (figure taken from [Lange et al., 2005]).

[Jain] 2009 Pattern Recognition Letters

Similis simili gaudet



Il. Data-Driven Problem Statement

Ilteration continues until the set of

centroids is stable; in other words,
convergence is guaranteed in a finite
Algorithm 1: K-Means (KM) Algorithm AOLIIEIE ) steps_by SSHIG th.at 2]
some non-negative error function,
f{'h{([}eans(u k, €): monotonically decreasing during each
<_

iteration
// Set of Centroids C' = {C1,...,C}}
// Assume Centroid is Class C; = (x;, D;), D; € D

Randomly initialize C;.Xq, ..., Cy. Xy

repeat
t—1+1
// Gathering (Expectation hard assignment)
fori:=1.....kand j=1,....,n do

| CLD; & x; .t min|CLx, — x; 2 Expectation

end
// Maximization Step
fori:=1,..., k do

£ 4

EXEDi X
| D; |

Maximization

‘ Ch.x; // re-estimate mean

we always add an iterate i to ensure

end
. k
until » 7 >0 o

. 4 €

Ol _ Ot x|2 < :eeean We 310p if convergence is too slow
;X ; <




Il. Data-Driven Problem Statement

(Clustering)
-y
0 The run-time of k-means is O (inkd) where

) ¢ ; is the iteration
) o 1 is data size

e k is the number of clusters

e d is the dimension of data, i.e., x € R?

Basarim 2020



Il. Data-Driven Problem Statement
B

e Each cluster C; = {x;1,...,X;} contributes to sum of pairwise dissimilarities to sum
of total measure

e For cluster C;, we can write total measure measure(i), where |C;.D;| = ¢ as:

J@) = 5 > lxy—xall (1)

j=1 I1=1

£
- (3l - Ol 2
j=1

Basarim 2020



Il. Data-Driven Problem Statement
B

Cost: J is minimized monotonically

k
J=Y ) minlx - C x|

=1 xeC;

k k
J:y: y:mion—C@-.}_cHz—FZ Zl’ﬂiHHX—Ci-iHZ

i=1 xeC,.DLE i=1 xeC; . DHE
’¢,¢IQZI~ k ‘\=§§§§ L_
== Ss
’ . 2
{ Jopr = E E min||x — Cp.x[|"
So 44/
§§§§\ ?,:1 xec‘l DHE //44

=
e e e e e e e e e = = = = =



Il. Data-Driven Problem Statement

o Can we materially improve k-means from a data-
centric perspective to partition big stellar data?

0 Can this be generalized for other iterative
machine learning algorithms?

1 YESI

O Observing that data, in the original algorithm, is visited
continually no matter its affect on the algorithm i, n

O Data as it is used changes in its “expressiveness’—this
notion is that the affect of data is dependent on when
it’s used.

Basarim 2020



Il. Data-Driven Problem Statement
e

0 Low Expression (LE) and High Expression (HE) data
affect the outcome minimally and significantly,

respectively
0 LE and HE can switch
0 There is a tendency as k-means LE DATA
converges that most of the data
becomes LE

0 Can we capture this difference?

HE DATA

Basarim 2020




Il. Failures to Capture LE and HE

2z
0 Transparency—there were many failures to capture
this notion—which made us doubt, maybe, this was
a sound approach

O Entropy failed
O ltemset (level set) failed
O Triangulation failed—bounds

O Eureka—heaps! Now we needed to re-examine heaps

Basarim 2020



Il. Taste of Using LE,HE vs. k-| |

data set k=1000 | £=5000 | £=10000
init time (S) 0 0 0)
GS1 total run time (s) | 66 242 354
ParaHeap-£ cluster error 0.097 0.089 0.084
init time (S) 0 0 0)
GS2 total run time (s) | 2540 6226 11785
cluster error 0.096 0.102 0.098
data set k=1000 | £=5000 | k£=10000
init time (s) 46 158 313
GS1 total run time (s) | 69 214 412
k-means|| cluster error 0.084 0.081 0.077
init time (S) 6934
GS2 total run time (s) | 8713 failed failed
cluster error 0.092

Basarim 2020



ll. HPC (system architecture)

B Cenics

(entroid partitioner
for threads
1...T 1...T
threads  ongroid  partition threads

Thread scheduler ‘ Centroid subset

[ [ 1] GEEEE
I]ist:arllm:e Data T Centroid ¢
partitioner for -
comparator threads Upd;(tles %{::mld
whearest centroid Active data
Heap
insertion

Iteration
counter

i>1

Repooled
data

Figure 2, An overview of the system architecture
highlighting the heap data structures and parallel
implementation for a single ParaHeap-k iteration in its
entirety. Each iteration includes data association threads
(DATs) and centroid update threads (CUTs).
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Il. Expectation Maximization (EM)
I

0 Like k-means lots of work done (mostly by statisticians)
to improve movement

0 Unlike k-means (hard assignment), EM is soft
assignment—each datum belongs to typically a
Gaussian.

0 Used everywhere like k-means

0 Expectation-maximization algorithm as a clustering
algorithm(EM-T): Each block can be characterized as a
probability distribution and the goal is to iteratively
find the MLE of unknown parameters of blocks.

Basarim 2020



Il. Expectation Maximization (EM)
B

Algorithm 2: Expectation-Maximization (EM) Algorithm

Expectation-Maximization(D, k, €):
t+—0

Randomly initialize pf, ..., p}, .

ST Vi=1,.. .k ( Expectation D N

PYCy) « #.Vi=1,....k

repeat Maximization
t—t+1 \ /

// Expectation Step
fori=1,....kand j=1,....n do
P (lep't a) P((‘ t
‘ Wij = S e 5) PO // Posterior probability P'((j|x;)
end
// Maximization Step
fori=1,..., k do
ph Tiawux // re-estimate mean
t ZJ 1 Wij
PR R w”gi ‘:‘:Hx" e // re-estimate covariance matrix
j=1 Wij
PYC;) + Z*’ L% /| re-estimate priors
end

. k —1
until S [l — pl 72 < e



Il. Expectation Maximization (EM)

33|
EM-T general run-time: O(ik(d® + nd?); best run-time O(inkd)

E-step invert 3; compute |X;]; O(d°) A O(kd?)
evaluate density; O(d?) 23 O(knd?)

M-step update X LA O(knd?) A

D = {xl:...fxfa}fxfEﬁd

C! = (e R E € R Pr(Cy) € [0,1],C5.D; € D)
o~ N(Cop. C.X)
i 1 1 _ N -
fi(x|C;) = [?W}_Edet[E}_iﬁ_i["_ﬂTE Hx-x)

Maximum Likelihood Estimate (Caleulus and Linear Algebra):

.
X=-3,%

- . . B im 2020
£ =%, (x - ) (x — 1)



Il. Expectation Maximization (EM)
=N

EM Convergence k =2 (5 iterations) Data
2.0 & Data
1.8 -
1.6 -
Converged
S ¢ ..
L4 7 G2
" ‘_ ".'..' 3
1.2 - «
10 & Data Converged "¢ Dpta

I I 1 I ) 1 I I 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
X0
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Il. Expectation Maximization (EM)

EM Convergence k=2 (5 iterations) Data

2.0 A

[1.5,1.5]

"

Converged

X1

Converged-. Dpta

I I I 1 I I I

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Xo
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I1l. Solution

I
0 Heaps have excellent computational properties

1 Use these to store and separate LE, HE

0 A complete /nearly complete balanced binary tree

with the “hea p" proper’ry Binary (min) heap
Type binary tree/heap
© Invented 1964
Invented by J. W. J. Williams

Time complexity in big O notation

Algorithm Average Worst case
Space O(n) O(n)
Search O(n) O(n)
Insert O(1) 'O(Iog n)
[ [z [s[efo]e [7 [s [o] Find-min o(1) o(1)

Delete-min O(log n) O(log n)

Basarim 20:

wikipedia



I11. Solution
2

0 Intuition was LE resides at top, HE resides at bottom of
heap (min for k-means, max for EM) (investigating

Laplacian)
0 Why should LE remain at the top if it’s LE?

0 We identified a new property of heaps that we call
strong and weak

O Strong means from the root to some level £ each level can
be permuted, and the heap property remains true.

O Weak means from some level £ below the root to the leaves,
one or more levels cannot be permuted without violating the
heap property

O Strong heaps are “semi”’-monotonic—tends to want to be
monOTonic Basarim 2020



I1l. Solution

for k-means min heap
o 5<8A5>3

Basarim 2020



I1l. Solution

Strong Heap




I1l. Solution

Strong and Weak Heap 0

X?%
@ 5 @
5 ) do

|1]2]3]4]|5[6[7|8]9]10]|11|

might be indicating that 6

is HE data masquerading

0|2]1]|4|5[3|7][8|9]10|11|6 |




I1l. Solution

_ a1 |
Strong and Weak Heap 0

X?%
@ 5 @
5 ) do

|1]2]3]4]|5[6[7|8]9]10]|11|

might be indicating that 6

is HE data masquerading
as LE

0|2]1]|4|5[3|7][8|9]10|11|6 |




I1l. Solution

4z |
Strong and Weak Heap 0

}%
@ 5 @

CRORTRG

(1] 2]3]4]5]6]7|8]9]10]11]

Our stopping

criteria

‘0|2|1‘4‘5|3||8‘9‘10‘11|6| Hamming Distance




|. Context: Perspective—it’s all about

the data
T

Observe that ush exist from the root to some level £ and pyh
exist from ¢ 4 1 to the root. For N distinct elements, the limit of

the ratio of ugh to pwh goes to zero:

Lemma

lim

As an example, for seven distinct elements, 48 of the 80 different
heaps (60%) are ush. Adding only one more distinct element drops
the percentage to less than 23% for possible 210 heaps.

Basarim 2020



|. Context: Perspective—it’s all about

the data
EE N
KM*
All But
Data set Never Once Once Always
Ringnorm 17% 18% 8% 26%

US Census  19% 149, 9% 25%

KDD Cup  25% 6% 4%  28%

Table of what percentage of data vs. how many times showed up in the
leat nodes. This table reveals that a significant portion of the data can be
clustered without any computation after first iteration.

Basarim 2020



I1l. Solution

sy
0 Why should LE remain at the top if it’s LE?

0 We observed what we identified as strong and LE DATA
weak heaps HEData | EData

-

Basarim 2020



Il. Where is HE mostly?

Graph of where HE are located when inserting into a h. For
example, at 30% HE (red dot), building 1M random h, almost
95% of the 30% reside in the leaves (green diamond)

95

[ 1]
L=

Proportion of the HE data located in the leaf nodes (%)

0 10 20 Basarimi2020 40 50
Proportion of HE data in the uh ()



Il. Where is HE mostly?




lll. Solutions (Model based)

There are several variants of the initial expectation-maximization algorithm (EM-T for
traditional EM) that exist and most of them have been designed by the statistical community.
Broadly, we can aggregate the strategies in three categories:

(1) Employing new models Langari et al. (1997)
(2) Improving the accuracy Tang et al. (2007)

(3) Expediting convergence rates and reducing computing times Neal and Hinton (1998),
Booth and Hobert (1999)

Ann. Statist.
Volume 11, Number 1 (1983), 95-103.

On the Convergence Properties of the EM Algorithm

J. R. Statist. Soc. B (1999)
61, Part 1, pp. 265285 C. F. Jeff Wu

Maximizing generalized linear mixed model
likelihoods with an automated Monte Carlo
EM algorithm

A VIEW OF THE EM ALGORITHM THAT JUSTIFIES

INCREMENTAL, SPARSE, AND OTHER VARIANTS
James G. Booth and James P. Hol ' '

University of Florida, Gainesville, USA


https://projecteuclid.org/euclid.aos
https://projecteuclid.org/euclid.aos/1176346060#author-euclidaos1176346060WuCFJeff

Algorithm 3: Expectation-Maximization® (EM*) Algorithm

Expectation-Maximization™(D, k. e, 1, 7):
t 10

Randomly initialize pf.. .., g}
eI Vi=1,... .k

PHC) L Wi=1,... .k

// Heaps and data H' = {H! H!} ... H}}

// Individual maxheap H; = ((xy, wi),. ... (X, wi)), £ <n
// Gaussians G' = {G1.GL.... . G}}

// Gaussain is a class G, = (p,;. E,, P(C}), H;)

Dyr + D // Initial Step Use All Data
repeat

// Expectation Step
// Using only Dyp
fori=1....kand j=1....,ndo

‘ Gijavij Efjlh;ﬂcjfj;{]ﬁj[ﬂ'n] // Posterior probability P'(C}|x;)

end
// Build Heaps and then only update
fori=1.... . kandj=1,.. . ndo Arrows represent adding

| Gij-Hinsert(x;, w;;), where max{Pr(G};.w;;)} h
end edp structures
// Maximization Step We are using only the HE (which

P to update with HE dat . .
!/ rffa@re ¢ update wi ke are the leaves) in the expectation step;

HE
fori=1,....k do we use LE and HE in the maximization

t— Zj:_lzuij:j // re-estimate mean step.
= ]

t gl e ) Ty . . .
B! Lj= "g,f Z__ ! P'J,f;’ re-estimate covariance matrix
J=1 13

PHCL) + @ // re-estimate priors
D' + G'.H,.Get(ry) // Default leaves
G+l & {G’Hl}

end

i’
until threshold on ¢ Hamming(G' ' H) < 7, h




Data

. 2.0 ‘F‘Data

(1) means after building heaps:
[1.43787816 1.25676416]

Observe the first set of [3.3258298 1.37440759]
means are identical to EM-T,

but the convergence

criteria ends, since the
leaves remain unchanged

“ _____ | 2 e Converge
¥
CO”"ergeé" (2) means after building heaps:
1.2 b [1.40803925 1.26980084]
[3.72779364 1.38689648]
1.0 - ‘i Data Data @

I I 1 I I I I I

1.0 1.5 2.0 2.5 ~.0 3.5 4.0 4.5 5.0




Both EM-T and EM* Sample Plots
5K points from each Gaussian

EM-T Gaussians

data

data

EM® Gaussians

data

[ JEm-T

mu_© [1.49983452 1.49983452]
Sigma 8 [ ©.2579383 6.2579383 ]
[ ©.2579383 ©6.2579383 ]

mu_1 [4.99801626 1.00066125]]

Sigma 0 [0.4897782 -©.16325831]
[-0.16325831 0.054419087]

EM*

mu_© [1.46803925 1.26986084]
Sigma 8 [ ©.6571488  ©.15932251]
[ ©.15932251 ©.1971783 ]

mu_1 [3.72779364 1.38689648]]
Sigma = [ 2.47120191 -0.66345719]
[-0.66345719 ©.23736357]

A common observation

of speed-ups, even from

decades ago, is the smaller
the data, the greater the error




IV. Results

The CRAN landscape
Pkg. Vrs. Clust./Class Density Est. MB Clust. Lang. Parallel
mclust 5.4.6 Y/Y Y Y R N
mixture 1.5 Y/Y N Y R N
Rmixmod 2.1.5 Y/Y Y Y R N
flexmix 2.3-15 Y/N N Y R N
EMCluster 0.2-12 Y/Y N Y R N
mixtools 1.2.0 Y/N Y N R N
ClusterR 1.2.2 Y/Y N N R,C++ Y
DCEM (EM*) 2.0.2 Y/Y N N R N
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IV. Resulis 700 points, 11 features

Wisconsin breast cancer data

The first experiment is done with the Wisconsin breast cancer data Wolberg et al. (1995).
This data set is small: 699 records and 11 attributes. It is publicly available from the UCI
(University of California, Irvine) machine learning repository Dua and Graff (2017) and was
created to identify features that indicate tumor classification as either malignant or benign.
Originally, the two groups have 444 and 239 data points, respectively. After removing
missing records (a minor, insignificant number), EM+ and EM-T algorithms are running
over the data size (683 tuples using 9 features).

The results show that EM-T is marginally better for small values of k but, EM* takes less
time and fewer number of iterations, as the number of clusters are increased beyond k = 2
(Figure 2 and Table 3). Results are similar in terms of clustering error and the accuracy of
EMz is in the range 81.82 — 96.77% and for EM-T, it is 78.74 — 95.75%. However, EM* has
slightly higher accuracy than EM-T for true numbers of clusters (k = 2) (Table 3).
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Wisconsin breast cancer data
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(A): Plots showing averaged results of 5 runs for training time, iterations and accuracy.
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(B): Boxplots for training time, number of iterations and accuracy.



IV. Resulis 50K points, 14 features

US Census data

The second experiment is done on the US census income data Meek et al. (2002). This data
set contains approximately 50K points with 14 features (both continuous and discrete) and
is available for download from the UCI (University of California, Irvine) machine learning
repository Dua and Graff (2017). After removing missing values, the data had 45K points
and 6 dimensions (only continuous attributes). The original classification objective was to
separate people who earn more than 50K from those who do not.

The results indicate that EM# quickly outperforms EM-T (Figure 3) as the number of
clusters are increased, particularly beyond k = 2 (Table 4). EM-T fails to converge in 1000
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US Census data
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(E): Boxplots for training time, number of iterations and accuracy.




IV. Results 5K points, 57 features

7 |

Spambase data

In the third experiment, we used the Spambase data set Hopkins et al. (1999). The original
purpose of this data was to create a spam filter by identifying the characteristic patterns
(words, sequences efc.) that can distinguish between spam and non-spam emails. This data
set has 4601 records with 57 features and in spite of its moderate size, presents a sharp
increase in number of dimensions, scale and type of features, as compared to the earlier
experiments. It includes 2788 spam and 1813 non-spam emails and is publicly available

from the UCI (University of California, Irvine) machine learning repository Dua and Graff
(2017).
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Spambase data
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IV. Resu"s 7.5K points, 20 features

Ringnorm data

The first experiment was done on the ringnorm data Breiman (1996). This data set was
initially used to study the bias and variance properties in arcing classifiers Breiman (1996)
and is openly available from the UCI (University of California, Irvine) machine learning
repository Dua and Graff (2017). It contains 7400 data points with 20 features. There are two
groups that have 3664 and 3736 instances, respectively and both are drawn from multivariate
normal distribution.

adaptively, resample, and combine (arc)
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Ringnorm data
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Mumber of clusters experiment

EM-T failed to converge for all values of k in multiple runs.
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Scalability experiment
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IV. Results

1 Comparison to other packages in case we did
“something special” to our code

0 We used large synthetic data sets so no package
would have an advantage

7 We demonstrate some of the metrics we used to
compare EM-T with EM*
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Experiment on number of clusters

mixtools failed to converge for k = <20, 40, 60, 80, 100> mixtools failed to converge, iterations not available
200 =
BOOO -
w ,
- i 150
3 Implementation - ]
ﬂ Implementation
— 4000 - DCEM (EM®y 2
E w5 100- DCEM (EM*)
= EMCluster bt
m ) [T EMCIuster
E mixtools -E
=
™ 2000- =
ﬁ ) ' '

Humhar uf r.:lust&rs Humbar uf l:lustars

Comparing DCEM with mixtools and EMCluster on data with large number of clusters.
Plot for execution time show that DCEM is significantly faster than EMCluster and mixtools. In
terms of iterations, DCEM requires fewer iterations than EMCluster, iterations for mixtools are not
reported as it could not converge in the threshold of 2 hours.
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Scalability experiment

mixtools and EMCluster could not converge mixtools and EMCluster could not converge
for n =<1, 1.5, 2, 2.5, 3> million points for n =<1, 1.5, 2, 2.5, 3> million points
DCEM converges within 100 iterations for all cases

BO -
G000 -
Implementation
. DCEM (EM*) Implementation
EMCluster . .
DCEM (EM*)
iritools
- 20 -
u -

Mumber of data points (millions) Mumbar nf data puints [mlllians}

o
1=I

£
[=3
=3
=

Training time (seconds)
[
=

MNumber nf iterations

- Comparing DCEM with mixtools and EMCluster on large data. DCEM always converges
(maximum execution time of ~33 minutes for 2 million points) in all cases whereas EMCluster and
mixtools failed to converge within the time limit of 2 hours. Iterations are not reported for mixtools
and EMCluster because they failed to converge for all values of n.
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IV. HPC in small packages: Viability of Small Machines facing
Big Data, a study in leveraging high-expressive data helps
improve iterative algorithms.

Computational details

All experiments were done on a dedicated SICE

Engineering) VM instance - Schmuck. Schm
18.04 release of the Ubuntu desktop. It has two intel Xeon cores (2.70GHz) with 16 GB of

main memory and 8GB of swap partition. To ensure precision of results, the system was
maintained in ideal conditions i.e., no other resource intensive jobs were running during the

experiments. DCEM is implemented and tested in R 3.6.3 (2020-02-29).

. . . . L. . wnload statistics for DCEM since release (September, 2018)
DCEM: Clustering Big Data using Expectation Maximization Star loads: 800, Average downloads: 390, Minimum downloads: 41
800 - ﬁ
Implements the Improved Expectation Maximisation EM* and the traditional EM alg Py
The implementation supports both random and K-means++ based initialization. Refer / N
600 - |
; - |
Version: 204 £ Am) |
H ‘] f \ package
Depends: R (=320) . A \ | el
: - 5 A (A T, S
Imports: mvtnorm (= 1.0.7), matrixcale (= 1.0.3), MASS (=7.3.49). Rcppl: | J o\ ‘/\/ \‘ |
C g ) = I\ £ 1
LinkingTo: &Pp_ . | NN \if ||
Suggests: knitr, rmarkdown / | |
|
. J
Published: 2020-08-02 L
Author: Sharma Panichit [aut, cre, ctb]. Kurban Hasan [aut, ctb], Jenne M 5)@,,5;\;:;;;;;5;;;‘;;::;15};‘;\g‘jgg;g‘;‘;‘;gj{j{;ggg;gggj
Maintainer: Sharma Parichit <parishar at iu.edu= e o i e
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V. Future Work

2
0 Implement parallel/distributed heap-based
optimization
00 Examine other structures (maybe total order is

better than partial order)

0 Add additional functionality to EM* (Specifically k-
means™, other iterative algorithms

1 Maybe (maybe) make the Python upgradable to
3.8 instead of 2.7 (we have a good number of
downloads)
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Questions?
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